Problem Statement: An 18 kg child slides down a snow-covered slope from rest in a 5.0 kg sled. The slope is straight and inclined at an angle of 31 degrees with the horizontal. Determine the velocity of the child after sliding a distance of 95 m along the slope.

Note that this is a net-force problem in two dimensions combined with a dvat problem.

Given

$$M_s = 5.0 \text{kg}$$

 $\theta = 31^\circ$

$$1 = 95m$$

Goal

Diagram

Force diagram

ed mg xy

To find the magnitude of 1/4, when the sled reached the bottom

Equations

$$0x = 9 \sin \theta$$

Froty = N- mg cos A

(not relevant to

$V_f^2 = V_s^2 + 2\alpha_x d$ $V_s^2 = 0$

Substitute

$$4 = \sqrt{2(9.8 \text{ m/s}^2)(\sin 31^\circ)(95 \text{ m})}$$

 $4 = 3 \text{ m/s}$

Checks

Sign V: t root is selected for Vf. is consitent with

what + x was defined as

Unity:
$$\sqrt{\frac{m^2}{5^2}} = \frac{m}{5}$$

Sense V: 31 m/s is 70 m/h. That's a fost sled.