Finding the net electric force on a charge due to two other charges (2-dimensional symmetric arrangement)

Refer to the diagram below. Charges $q_{\mathrm{R}}=+4.0 \mu \mathrm{C}$ and $q_{\mathrm{B}}=+4.0 \mu \mathrm{C}$ are positioned as shown. A green charge $q_{\mathrm{B}}=+1.0 \mu \mathrm{C}$ is positioned on the perpendicular bisector of the line joining the red and blue charges. What are the magnitude and direction of the net, electric force on the green charge?
\(\left.\begin{array}{l}Notes

x- and y-coordinate axes are selected to take

advantage of the symmetry of the situation. We

will see that with this selection, the x-component

of the net force will be 0 , and the y-component of

the net force will be twice that of the y-component

due to either the red or blue charge.

The positions x_{\mathrm{R}}, x_{\mathrm{B}}, y_{\mathrm{G}} , are given with respect to

the defined axes. These may be positive or

negative numbers. The distances, d_{\mathrm{RG}} and d_{\mathrm{BG}}, on

the other hand, are magnitudes. They are

calculated using the Pythagorean theorem.\end{array}\right\}\)| The force diagram is drawn. The forces extend |
| :--- |
| from a single point at the position of the green |
| charge. Since the red and blue charges are equal |
| and are equidistant from the green charge, we |
| know that the magnitudes of the forces due to the |
| red and blue charges on the green charge will be |
| equal. |

$\begin{aligned} F_{G R, y} & =\left\|F_{G R}\right\| \sin \theta \\ & =k \frac{\left\|q_{G}\right\|\left\|q_{R}\right\|}{d_{R G}{ }^{2}} \frac{y_{G}}{d_{R G}} \end{aligned}$	The y component of the force of the red charge on the green charge is the magnitude of F_{GR} multiplied by the sine of the angle, θ. Note that this angle is the angle that the x -axis makes with the line joining the red charge to the green charge. The side opposite θ is y_{G}, and the hypotenuse is d_{RG}. Thus we substitute the ratio $y_{\mathrm{G}} / d_{\mathrm{RG}}$ for $\sin \theta$. We also substitute Coulomb's Law with the charges in absolute signs.			
$\begin{aligned} F_{G R, y} & =k\left\|q_{G} \\| q_{R}\right\| \frac{y_{G}}{d_{R G}^{3}} \\ & =k\left\|q_{G} \\| q_{R}\right\| \frac{y_{G}}{\left(\sqrt{\left\|y_{G}\right\|^{2}+\left\|x_{R}\right\|^{2}}\right)^{3}} \\ & =k\left\|q_{G} \\| q_{R}\right\| \frac{y_{G}}{\left(\left\|y_{G}\right\|^{2}+\left\|x_{R}\right\|^{2}\right)^{3 / 2}} \end{aligned}$	We collect the terms in d_{RG} and apply the Pythagorean theorem to d_{RG}. Note that the positions under the square root sign are placed between absolute signs, since we're interested in distances here. Of course, since the values are squared, the result will be positive in any case. The y_{G} in the numerator is not in absolute value signs, because the sign of y_{G} determines whether the force component is in the +y or -y direction.			
$\begin{aligned} F_{n e t, G, y} & =2 F_{G R, y} \\ & =2 k\left\|q_{G} \\| q_{R}\right\| \frac{y_{G}}{\left(\left\|y_{G}\right\|^{2}+\left\|x_{R}\right\|^{2}\right)^{3 / 2}} \end{aligned}$	We double the previous result to get the ycomponent of the net force on the green charge. In making substitutions below, note the conversion of microcoulombs to coulombs.			
$\begin{aligned} F_{n e t, G, y} & =\frac{2 k\left\|q_{G}\right\|\left\|q_{R}\right\| y_{G}}{\left(\left\|y_{G}\right\|^{2}+\left\|x_{R}\right\|^{2}\right)^{3 / 2}} \\ & =\frac{2\left(8.99 E 9 \mathrm{Nm}^{2} / C^{2}\right)(1.0 E-6 C)(4.0 E-6 C)(0.030 \mathrm{~m})}{\left[(0.030 \mathrm{~m})^{2}+(0.050 \mathrm{~m})^{2}\right]^{3 / 2}} \\ & =10.9 \mathrm{~N} \end{aligned}$				

The y-component of the net force on the green charge is +10.9 N , and the x -component is 0 ; therefore, the magnitude of the net force is 10.9 N and the direction is 90°.

