Finding the position between two positive charges where the net force on a third, positive charge is 0
Refer to the diagram below. Charges $q_{\mathrm{R}}=+1.0 \mu \mathrm{C}$ and $q_{\mathrm{B}}=+4.0 \mu \mathrm{C}$ are positioned as shown. What must the position of the positive green charge be so that the net electric force on it is 0 ?

$d_{G B}=d_{R G} \sqrt{\frac{q_{B}}{q_{R}}}$	
$d_{R B}-d_{R G}=d_{R G} \sqrt{\frac{q_{B}}{q_{R}}}$	We eliminate the unknown d_{GB} and solve for d_{RG} in terms of the known distance d_{RB} and the two known charges.
$d_{R B}=d_{R G}\left(1+\sqrt{\frac{q_{B}}{q_{R}}}\right)$	
$d_{R G}=d_{R B}\left(1+\sqrt{\frac{q_{B}}{q_{R}}}\right)^{-1}$	Substituting known values gives the result for d_{RG}.
$=(0.090 \mathrm{~m})\left(1+\sqrt{\frac{4.0 \mu \mathrm{C}}{1.0 \mu \mathrm{C}}}\right)^{-1}$	
$=0.030 \mathrm{~m}$	
$d_{R G}=d_{R B}\left(1+\sqrt{\frac{q_{B}}{q_{R}}}\right)^{-1}$	

To complete the problem, we must solve for x_{G}, the position of the green charge. Since $x_{\mathrm{R}}=-0.060 \mathrm{~m}$ and the green charge is 0.030 m to the right of the red charge, the position of the green charge is -0.030 m .

