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Gravitational fields 
The concept of field is a key idea in physics. 
Let’s apply it to gravitation. 
 
The diagram illustrates a cross-section of the 
gravitational field of the Earth or any spherical 
celestial object. Lines of force are used to 
represent the field. Here’s how the lines are 
drawn and what they tell us. 
 

•  At a given distance from the Earth, the lines 
are uniformly spaced. This indicates uniform 
field intensity, g. The value of g is the same 
at equal distances from the center of Earth. 

•  The spacing of the field lines increases with 
distance from the Earth. This indicates that 
the field intensity weakens as distance 
increases. 

•  The direction of the field (indicated by the 
arrows) is the direction of the force on a 
small mass placed in the field. 
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A note about the symbol, g: Up to now, we’ve 
taken g to equal 9.8 N/kg at the surface of the 
Earth. This is only a special instance. More 
generally, g is a function of the distance, r, from 
the center of the Earth: g(r) = GMe/r2, where Me 
is the mass of the Earth. 
 

Note what g(r) depends on: 
 

•  Distance from the center of the Earth, r. In 
the diagram, note that g(r) is the same at all 
points on the dashed line equidistant from 
the center of the Earth. However g(r)  < 
g(Re), since r > Re. 

•  Mass of the Earth: The Earth is the source of 
the field. The gravitational field intensity 
depends on the mass of the source object. 
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Next we relate the concept of force to that of 
field. In order for there to be a force, there must 
be an object in the field. Suppose we place a 
small mass, m, at distance, r. The gravitational 
force on the mass is Fg(r). 
 

From the gravitational force law, we know that 
 

Fg(r) = GMem/r2. 
 

Substituting g(r) = GMe/r2, we have 
 

Fg(r) = mg(r). 
 

The gravitational force on mass m at distance r 
from the center of the Earth is therefore the 
product of m and the gravitational field intensity 
at distance, r. This is how one calculates 
gravitational force given the values of m and 
g(r). 
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The formula, g(r) = GM/r2, is a special case of 
gravitational field for a spherically symmetric 
source object of mass, M. The field concept is 
used more generally to describe the fields of 
mass distributions. Here’s the definition. 
 

The gravitational field, g, is the force per unit 
mass, Fg/m, that would be exerted on a small 
mass, m, placed in the field. 
 

Symbolically, g = Fg/m. Note these things about 
the definition: 
 

•  We denote g and Fg in boldface to indicate that 
they’re vectors. The direction of g is the same 
as the direction of the force. 

•  The mass, m, must be small enough that it has 
a negligible effect on the field of the source 
object. 
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Consider the condition that the mass, m, be small 
enough that it has a negligible effect on the field 
of the source object. We can easily imagine a 
situation where m is comparable to M. In this 
case, the field lines are no longer radially 
symmetric. In the extreme case that m = M, the 
field would look like the one to the right. In this 
case, we would could no longer say that the field 
is due to M alone, since both masses make 
significant contributions. 
 

Let’s take a closer look at this situation. See the 
diagram to the right. We’ll call the masses M and 
M’. Suppose we want to determine the field of the 
masses at a point P, which is distance, r, from M 
and distance, r’, from M’. This is a simple matter 
of vector addition. The net field, gnet, is the vector 
sum of g and g’.  
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Note that the direction of gnet  is tangent to the 
field line that passes through point P. This is also 
the direction of the net gravitational force on a 
small mass, m, placed at point P. The magnitude 
of the net force is 
 

Fnet,g = mgnet. 
 

This method of adding the fields of individual 
masses to obtain the field of the mass distribution 
is called superposition of fields. 
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In what we’ve done up to this point, we’ve treated the spherical masses as 
point masses for the sake of calculating gravitational fields and forces. This is 
not one of those assumptions made for the sake of convenience. It can be 
proven (calculus is required) that for points outside of a spherical mass 
distribution, the entire mass acts as if it were concentrated at a point at the 
center of the distribution. 
 

Let’s look now at a situation in which we have to consider the mass as an 
extended body. 

Consider the situation shown to the right. A 
spherical mass of mass, M, has radius, R, and 
uniform density, ρ. We know that the 
gravitational field at point P a distance, r, from 
the center of M is given by 
 

g(r) = GM/r2. 
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Let’s suppose we hollow out a spherical cavity of 
radius R’ centered a distance d to the left of the 
center of the larger sphere. What is the gravitational 
field at point P now? The field will most certainly be 
less, since there’s less mass; however, the 
distribution of the remaining mass is no longer 
spherically symmetric. Thus, we can’t treat the 
mass as a point centered at (0,0). We need a 
different approach.  
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The approach will be to use superposition of 
fields. Let’s first fill the cavity back in with mass 
but act as if there are two different objects, the 
filled-in cavity with mass M’ and the remainder of 
the mass of the original sphere, M’’ = (M - M’). 
We can say that the net field at point P due to 
the two masses is the following 
 

g = g’ + g”. 
 

Now our goal is to find the field g” with the cavity 
carved out. Thus we solve for g”. 

 

g” = g – g’ 
 

Note that both g and g’ are the fields of 
spherically-symmetric mass distributions. Thus, 
we can write expressions for those fields. 
 

g = GM/r2 
 

g’ = GM’/(r + d)2 
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Thus, the field at point P with the cavity carved 
out is 

g” = g – g’ 
 

                           = GM/r2 - GM’/(r + d)2. 
 

The mass M’ that was carved out can be 
expressed in terms of M using a scaling 
relationship: M’ = M(R’/R)3.  

 
 

 

The above is a result of the fact that the density is uniform, and the volume is 
spherical. (Mass scales as the cube of the scale factor when density is 
constant.) With this substitution, we obtain 
 

g” = GM[1/r2 - (R’/R)3/(r + d)2]. 
 

While the result may seem complicated, the relationships used to obtain it are 
simple.  
 

•  The gravitational field of a spherical mass distribution is g = GM/r2. 
•  The net field of a distribution of masses is a simple superposition. 
•  Mass is proportional to volume for constant density. 
•  The volume of a sphere is proportional to the cube of the radius. 
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For reference: g” = GM[1/r2 - (R’/R)3/(r + d)2] 
 

As always, we need to test the result for special cases. 
If R’ = 0, there is no cavity and 
 

g” = GM(1/r2 – 0) = GM/r2 = g 
 

As expected, the field is the same as for the original 
sphere. 
 

If d = 0, the cavity is centered on the original sphere as 
shown to the right. The formula for g” reduces to the 
following: 
 

g” = GM[1/r2 - (R’/R)3/r2] 
 

   = (GM/r2)[1 - (R’/R)3] 
 

  = g[1 - (R’/R)3] 
 

With R’ = 0, we have g” = g as before.  
With R’ = R, we have g” = 0. This makes sense, because there’s no mass left 
to produce a field.  
With R’ = R/2, we have g” = (7/8)g. This makes sense, because we’re carving 
out one-eighth of the original mass. 
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For reference: g” = GM[1/r2 - (R’/R)3/(r + d)2] 
 

Now let’s solve for g” using these given values: 
 

d = R’ = R/2 and r = R 
 

The situation is shown to the right. Substituting the 
given information into the formula, we have: 
 

g” = GM{1/R2 – [(R/2)3/R3]/(R + R/2)2} 
  

                        = GM[1/R2 – (1/2)3/(3R/2)2] 
 

                  = (GM/R2)[1 – (1/8)/(9/4)] 
 

                  = (17/18)g 
 

Suppose the cavity had been located as shown to 
the right. Then all that would change would be one 
sign shown in red below. 
 

g” = GM{1/R2 – [(R/2)3/R3]/(R - R/2)2} 
  

 

In this case, g” would simplify to g/2. It makes sense 
that the field would decrease significantly if there 
were much less mass directly below your feet. 
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Problem A. 
 

Suppose now that the cavity were positioned as 
shown to the right. The gravitational field at point 
P due to the scooped out mass, M’, would be 
directed at an upward angle, while the 
gravitational field due to M would remain the 
same as before. 
 

As in the foregoing discussion, g” represents the 
gravitational field of the modified sphere, that is, 
the object of mass M” = M – M’ (original sphere 
of mass M after mass M’ is scooped out).  
 

a.  Determine the component of g” along the x-
axis in terms of g and a numerical factor. 

 

b.  Determine the component of g” along the y-
axis in terms of g and a numerical factor. 

c.  Determine the angle that g” makes with the 
+x axis. (Note that this is not the angle θ 
shown in the diagram.) 
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Everything that preceded this had to do with the field outside 
of the source object. Now we consider the situation inside 
the source. We first scoop out a very large cavity centered 
on the object, leaving just a ring of mass as shown to the 
right. What is the field at point P? That is, would what the 
force on a small mass placed at the center of ring be? 
 

The answer is 0. Let’s see why. In the bottom diagram, note 
the two lines drawn through point P and intersecting the ring 
at top and bottom. Think of these lines as defining the 
boundaries of cones (in 3 dimensions) with vertices at P. If 
the vertex angle of the cone is small, the sections of the ring 
intersected by the cone can be considered as point masses, 
m1 and m2. The fields g1 and g2 due to these masses are 
equal in magnitude because m1 = m2, and the distances to 
point P are the same.  

Thus, the net field at point P due to m1 and m2 is 0. The same argument could 
be made no matter what pair of lines were drawn through point P. This means 
that for every m1, there is a corresponding m2 that cancels m1’s field. Hence, 
the net field at point P is 0. 
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While the preceding argument may seem obvious, it’s not so 
obvious that a similar argument can be made for any point in 
the hollowed-out cavity. The net gravitational field at point P 
in the figure to the right is also 0. 
 
We start the argument in the same way as before by drawing 
lines through point P and extending them to intersect the 
ring. See the lower diagram. Since P is off-center, m1 < m2. 
Making the approximation before that, m1 and m2 are point 
masses (remember, we can shrink the vertex angle of the 
cone as small as we want), the corresponding fields at point 
P are the following: 
 

g1 = Gm1/r1
2  and  g2 = Gm2/r2

2. 
 

In 3 dimensions, m1 and m2 represent circular patches of 
mass. The diameter of a patch is proportional to the distance  
to point P. Since area scales as the square of the scale factor (r in this case), 
the area of a patch scales as r2. Since the thickness of the shell is the same for 
all patches, then the mass of a patch scales as r2 also. 
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This means that we can say m1/m2 = r1
2/r2

2 or m1 = m2r1
2/r2

2. 
Let’s make this substitution into g1 = Gm1/r1

2. 
 

g1 = Gm1/r1
2 

      = G(m2r1
2/r2

2)/r1
2 

    = Gm2/r2
2 

    = g2 
 
Thus, we obtain the same result as when P was at the center 
of the ring. It doesn’t matter where P is as long as it’s in the 
hollowed-out region. The net gravitational field is still 0. 

Note that this result is a consequence of canceling dependencies on r2. One of 
the dependencies is geometrical in nature, that of the mass depending on the 
square of r. The other dependency is that of gravitational force depending on 1/
r2. 
 

Let’s be clear about what we’ve shown. We’ve shown that the net gravitational 
field due to a uniform spherical ring of matter is 0 at any point within the ring. 
This only applies to the ring. Any object with mass beyond the ring will 
contribute to a field at point P. That’s because it’s impossible to shield objects 
from gravitational influences. 
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Part of the power of physics is being able to use fairly simple relationships to 
reach general conclusions and to extend those conclusions to similar 
situations. An argument similar to the one just made for gravitational fields 
also applies to electrical fields. That’s because electrical force also depends 
on 1/r2. The forces that charged particles exert on each other decrease with 
the inverse square of the separation of the particles. Thus, the electric field 
inside a ring of charge will be 0. 
 

In the case of electric fields, the 0 is absolute in the sense that electric fields 
due to other charged sources outside the ring can be shielded. The reason 
this is possible is that electric charge comes in two varieties, positive and 
negative. Forces between like charges are repulsive and between opposite 
charges are attractive. Thus, the electric forces and fields due to charges can 
cancel as a result of being opposites. This could never happen for 
gravitational force. There’s only one kind of mass, and the gravitational force 
between masses is always attractive. 



Simple Harmonic Motion 
The next situation we consider involves 
objects inside of other objects. Let’s 
suppose we were able to drill a tunnel along 
the axis of the Earth as shown to the right. 
We’ll assume that the mass removed is 
insignificant and can be ignored compared 
to the total mass, Me, of the Earth.  
 

Now we drop a small ball of mass, m, into 
the tunnel. What motion will the ball have? 
Will it slow to a stop at the center of the 
Earth? Will it keep going and turn around at 
some point? Will it keep going and never 
return? 
 

In order to determine the motion, we must 
first know what force the ball experiences. 
Thus, we need to know what the 
gravitational field is when the ball is at 
distance, r, from the center of the Earth. 
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In order to determine the field, we use this 
postulate: 
 

The gravitational field at a distance r 
from the center of a sphere of mass M 
of radius R and uniform density is due 
only to the mass enclosed by a sphere 
of radius r. 

 

The above should make sense based on 
what we showed earlier about how the ring 
of matter with r > R contributes a net field 
of 0. Now let’s see what this means for 
how the gravitational field depends on r. 
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The gravitational field due to the mass, M’, 
enclosed by a sphere of radius, r, is the 
following: 
 

g’ = GM’/r2. 
 

Note that we no longer take the mass as a 
constant, since M’ depends on r. Using a 
similar scaling argument as before,  
 

M’ = Me(r3/Re
3) 

 

Substituting, we obtain  
 

g’ = GMe(r3/Re
3)/r2 

 

    = (GMe/Re
3)r 

 
 
 
 

This says that g depends linearly on r, since the collection of factors preceding 
the r is a constant. Note that we can re-express this collection of constants as 
GMe/Re

3 = g/Re, where g is the field at the surface of the Earth. Thus, we have 
the following result for g’: 
 

g’ = (g/Re)r 
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We’re now in a position not only to describe 
the motion of the ball in words but also to 
write an equation for its position as a 
function of time. This is another example of 
the power of physics. We’ve actually already 
solved this problem. Here’s how we know. 
 

Remember that we showed g’ = (g/Re)r. We 
can also write this as 
 

g’ = Cr, where C = g/Re. 
 

Now recall the conditions for simple 
harmonic motion. There are two of them. 
 
 
 

1.  The force tending to restore an object to its equilibrium position is directly 
proportional to the displacement of the object from the equilibrium position. 

2.  The force is a restoring force in the sense that the force and displacement 
are always in opposite directions. 

 

Let’s see how this applies to the ball in the Earth tunnel. 
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To reiterate, here are the conditions for 
SHM.  
 

1.  The force tending to restore an object to 
its equilibrium position is directly 
proportional to the displacement of the 
object from the equilibrium position. 

2.  The force is a restoring force in the 
sense that the force and displacement 
are always in opposite directions. 

 

Here’s why the conditions apply to the ball 
in the Earth tunnel. 

 
 

 

1.  The equilibrium position is the center of the Earth. This is where the force on 
the ball is 0. Thus, r represents the displacement of the ball from 
equilibrium. Since g’ = Cr and C is a constant, the first condition is satisfied. 

2.  For +y (see diagram above), the displacement from equilibrium, ra, is 
positive while the field, ga, is negative. For –y, the displacement from 
equilibrium, rb, is negative while the field, gb, is positive. Thus, the second 
condition for SHM is satisfied. 
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Now that we know the motion is simple harmonic, we can immediately write 
expressions for the period of the motion and the function y(t). 
 

For any object in SHM, the period is given by this formula: 
 

T = 2π[(Inertial Property)/(Elastic Property)]0.5 
 

Think of the Inertial Property as something that resists motion and tends to 
increase the period. For a spring, that’s the mass of the object. For a simple 
pendulum the Inertial Property is the length of the string. 
  
 
 

 

The Elastic Property is something that tends to make the motion “springier” and 
decrease the period. For a spring, that’s the spring constant. For a pendulum, 
it’s the value of the gravitational field. 
 

Spring: T = 2π(m/k)0.5                    Pendulum: T = 2π(L/g)0.5 
 

The reason we can say this with confidence is that the same mathematics is 
used to solve all problems involving a Hooke’s Law type of restoring force. The 
only differences come in the constants. 
 



SHM, p. 7 

Let’s now apply this to the Earth tunnel. We saw 
that the magnitude of the field at distance r is 
 

g’ = Cr, where C = g/Re. 
 

The constant C here plays exactly the same role 
as that in the acceleration of an object of mass, 
m, oscillating on a spring. The magnitude of that 
acceleration is 
 

 a = |(k/m)x|,  
 

where x is the displacement from equilibrium. 
 
 
 

The constant, C, like k/m, is the proportionality constant between acceleration 
and displacement. Thus, we can write for the period of the ball in the Earth 
tunnel: 
 

T = 2π(1/C)0.5 
 

                                                        = 2π(Re/g)0.5 
 

Note that like the simple pendulum, a distance, Re in this case, plays the role of 
the Inertial Property, tending to make the period greater, while g plays the role 
of the Elastic Property. 
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Next we write the equation of motion of the ball. 
We know that the form of the equation is the 
same as that for SHM in general: 
 

y(t) = Acos(ωt + φ) + yeq 
 

For the Earth tunnel, we have A = Re for the 
amplitude of the motion, and yeq = 0 for the 
equilibrium position. We also know that 
 

 ω = 2π/T = 2π/[2π(Re/g)0.5] 
 

                                  = (g/Re)0.5 
 
 
 
 

 

The phase is determined by noting that at t = 0, the ball is at position y = +Re. 
Substituting, 

 

y(0) = Acos(φ) 
 

The phase, φ, must therefore be 0. (Note that if we had used a sine function to 
describe y(t), then the phase would have to be π/2, since sin(π/2) = 1.) 
 

Putting it all together, the equation of motion of the ball in the Earth tunnel is: 
 

y(t) = Recos[(g/Re)0.5t] 
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Problem B. 
 

The diagram shows 2 small spheres, each of mass, 
m, one red and one blue. The larger gray sphere is a 
planet of mass M and radius R. A tunnel is drilled 
through the planet along its rotation axis. The planet 
is unusual in being perfectly smooth and spherical 
with no atmosphere.  
 

The red sphere is dropped at the upper opening of 
the tunnel at the same instant that that the blue 
sphere passes the lower end of the tunnel in a 
circular orbit around the planet.  
 

Assume that the diameter of the blue sphere is negligible so that we can say 
that the radius of its orbit is R. 
  

a.  When the red sphere has reached the bottom end of the tunnel, where is 
the blue sphere in its orbit? In order to answer, you’ll need to determine 
expressions for the period of motion of each sphere and compare results. 

b.  Determine expressions in terms of g and R for the speed of the blue sphere 
and the maximum speed of the red sphere. Compare results. 
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Problem C. 
 

a.  Prove that the period of oscillation of a small object 
dropped into an Earth tunnel drilled off axis is the 
same as that in a tunnel coincident with the Earth’s 
axis. Ignore any frictional forces between the object 
and the sides of the tunnel. 

 

As an aid to solving the problem, consider the lower 
diagram, which shows the gravitational force, Fg, acting 
on the object. The restoring force is the component of Fg 
parallel to the tunnel. 
 

b.  Determine the numerical value of the period of 
oscillation of the object. 
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We’ll do one more problem to illustrate the SHM method. The situation is 
illustrated below. Two springs of different spring constants k1 and k2 are 
connected together in a series arrangement and then attached to a block of 
mass, m. The system is set into horizontal oscillation on a frictionless table. 
Determine the period of the motion in terms of k1, k2, and m. 
 

 
 
 
Solving the problem amounts to finding an equation for the equivalent spring 
constant, keq. That is, if the two springs were represented by a single spring as 
shown below, what would its spring constant have to be so that the mass had 
exactly the same motion as for the two springs in series. 
 
 
 
Finding the equivalent spring constant requires us to examine the forces. First, 
both of the springs 1 and 2 produce the same restoring force. We know this, 
because the tension is the same in all parts of the spring. However, springs 1 
and 2 will, in general, stretch by different amounts under the action of the same 
force.  
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Let’s say that under the application of force, FT, spring 1 stretches by an amount 
x1 and spring 2 stretches by an amount x2. Using Hooke’s Law, we can express 
these amounts in terms of the tension force of the spring constants: 
 

x1 = FT/k1 and x2 = FT/k2. 
 

Now consider the equivalent spring. Under the 
action of the same force, FT, the stretch would 
be the sum of x1 and x2. Then, 
 

x1 + x2 = FT/keq. 
 

We substitute the previous expressions for x1 and x2.  
 

FT/k1 + FT/k2 = FT/keq 
 

Dividing out the force term provides the relationship we’re looking for: 
 

1/keq = 1/k1 + 1/k2 



SHM, p. 13 
 

 
 
 

The formula for the period of a mass, m, on a spring of spring constant, k, is 
 

T = 2π(m/k)0.5 
 

Applied to the series springs, we have T = 2π(m/keq)0.5 with 1/keq = 1/k1 + 1/k2. 
 

As a check, suppose k1 = k2 = k. Then keq = k/2. This means the series of 2 
identical springs behaves as a single spring with half the spring constant of 
either individual spring. Under the action of the same force, FT, the elongation 
will be twice as much as for each individual spring. With the equivalent spring 
being less “springy”, the period will be greater. In this case, the period will be 
sqrt(2) times as great. 
 

Let’s substitute k1 = k and k2 = 2k as another example. Then  
 

1/keq = 1/k + 1/(2k) = 3/(2k). 
 

Then, keq = (2/3)k. Solving for the period, 
 

T = 2π(m/keq)0.5 = 2π[3m/(2k)]0.5  
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Problem D. 
 

A block of mass, m, is connected between two 
springs of spring constants k1 and k2. The block 
oscillates in simple harmonic motion on a horizontal, frictionless surface. 
 
a.  Determine the period of oscillation of the block in terms of m, k1 and k2. 

b.  Check your result for the special case of k1 = k2.  

c.  Given that k1 = k and k2 = 2k, obtain an expression for the period of 
oscillation in terms of m and k. 

 


