Problem 2-52. Begin by reading the problem statement in the textbook.
The two parts will be solved together, since results of the first part can be used in the second part.

| Don't write in this column. |
| :--- | :--- |

For the b part, we use the same equation as for the a part. Note that for x_{2} we substitute the symbolic result from part a. By doing so, we see how v_{1} relates to V_{o}.	$\begin{aligned} \mathrm{v}_{1}{ }^{2} & =\mathrm{v}_{0}{ }^{2}+2 \mathrm{a}\left(\mathrm{x}_{2} / 2-0\right) \\ & =\mathrm{v}_{0}{ }^{2}+2 \mathrm{a}\left(-\mathrm{v}_{0}{ }^{2} / 4 \mathrm{a}\right) \\ & =\mathrm{v}_{0}^{2} / 2 \\ \mathrm{v}_{1} & = \pm \mathrm{vo} /(2) \frac{1}{2} \text { (select positive root since velocity is in } \\ \text { the } & +\mathrm{x} \text { direction) } \end{aligned}$
Step 6. Substitute the given values with units. Do the arithmetic to arrive at the final answer.	$\begin{aligned} & \mathrm{x}_{1}=-(12.0 \mathrm{~m} / \mathrm{s})^{2} /\left(2 \cdot-3.5 \mathrm{~m} / \mathrm{s}^{2}\right)=21 \mathrm{~m} \\ & \mathrm{v}_{1}=(12.0 \mathrm{~m} / \mathrm{s}) /(2)^{1 / 2}=8.49 \mathrm{~m} / \mathrm{s} \end{aligned}$
Step 7. Apply sign, units, and sensibility checks.	a) $(\mathrm{m} / \mathrm{s})^{2} /\left(\mathrm{m} / \mathrm{s}^{2}\right)=\mathrm{m}$ sign is positive as final position is on the +x axis 21 m is about three car lengths, which makes sense b) units are m / s, as expected for velocity sign is positive as final velocity is in the $+x$ direction The final velocity is more than half of the initial velocity in half the distance. This makes sense, because the velocity depends on the square root of position. So the velocity decreases slower than the position does.

